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Scattering from Cylindrically Symmetric Systems 
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(Received 30 August 1951) 

Expressions for the intensity of scattering by systems composed of infinitely long cylindrical 
particles are derived. Four types of independent scattering regions are considered: (1) isolated 
cylindrical rods, with and without internal radial structure; (2) aggregates of parallel rods with 
fixed locations; (3) systems of parallel rods with variable locations; (4) two-dimensional crystals. 
The effect of random and specific orientation of independent scattering regions in discussed. The 
results are applicable to low-angle X-ray scattering from fibres and from macromolecular or 
micellar solutions. 

In a previous paper (Oster & Riley, 1952) we considered 
the scattering of X-rays and visible light by isotropic 
systems and confined our treatment to those cases 
which possess spherical symmetry. We shall now 
extend our examination to assemblies which possess 
cylindrical symmetry and in which the fundamental 
particles are very long compared with the wavelength 
), of the radiation used. On the macroscopic scale such 
systems may be isotropic or anisotropic. In the former 
case they are collections of cylindrically-symmetric 
domains in random orientation; in the latter, the 
domains themselves have preferred orientation. 
Micellar solutions are an example of the first type and 
completely oriented fibres of the second. We shall 
show that  there is a close analogy between the ex- 
pressions for the intensity of scattering by cylindrically 
symmetric systems and those for the equivalent 
spherically symmetric cases discussed in our first 
paper. The results obtained in the present paper are 
not only applicable to X-ray scattering and diffraction 
by certain macromolecular and colloidal systems but 
also to visible-light scattering and diffraction by 
macroscopic systems having cylindrical symmetry. 

A peculiar feature of systems of long rod-shaped 
particles is the correlation in orientation which sets 
in if the concentration exceeds a certain critical value, 
depending on the particle length and the forces of 
interaction (Onsager, 1949; 0ster, 1949). Very long 
particles will, even in fairly dilute solution, show 
correlation in orientation, the rods being nearly 
parallel over rather large domains. Fibres in bundles 
can usually be rendered parallel, at least in local 
regions, by stretching and rolling the sample. These 
properties of elongated particles considerably simplify 
the mathematics of the problem as it then reduces to 
a two-dimensional calculation. 

In this paper we shall calculate the angular 
distribution of scattered intensity for (1) isolated 
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cylindrical rods, with and without internal radial 
structure, (2) aggregates of parallel rods with fixed 
locations, (3) systems of parallel rods with variable 
locations as expressed generally by a radial distribution 
function, and (4) two-dimensional crystals consisting 
of an infinite periodic array of parallel rods. As in the 
previous paper, we shall eliminate the scale factor by 
writing all expressions in terms of the dimensionless 
variable kR in which R is the radius of the cylinder 
and k ~-(4r~/~t)sin 0, where /t is the wavelength of 
the radiation in the medium and 2 0 is the angle of 
scattering. 

In order that  the problem be reduced to two- 
dimensions, we shall consider only systems in which 
the fundamental units are cylindrical rods of infinite 
length and in which, within any independent scattering 
domain, the rods are perfectly parallel. The intensity 
of scattering is then localized in a plane. In the sections 
which immediately follow, it will be assumed that  the 
long axes of the rods are at right angles to the incident 
beam and the expressions derived for the scattering 
refer to angles measured in the equatorial plane. In 
the last section, the question of random and specific 
orientation will be discussed. 

Since we are dealing with systems possessing 
cylindrical symmetry, the resolution of the scattering 
problem is expressible in terms of Bessel functions. 
The properties of Jo(x) and Jl(x), the Bessel functions 
of zero and first order respectively, are given by 
Watson (1948). The numerical values used in 
computing were taken from the Harvard Tables of 
Bessel Functions . . .  (1947). 

Independent particles  

By analogy with the method used by Debye (1930) 
t o  derive the atomic scattering factor for three- 
dimensional systems of spherical symmetry, the 
scattered amplitude F from an infinitely long (com- 
pared with the wavelength) cylindrically symmetric 
system is given by 



G E R A L D  O S T E R  AND D. P.  R I L E Y  273 

F = I G(r) eikrc°s~da 
I G(r)da ' (1) 

in which G(r)da is the probabili ty tha t  the scattering 
material lies in the element of area da = rd~dr, where 
r is the radial distance in the equatorial plane and 

is the polar angle in this plane. Since we are con- 
cerned only with the relative scattering at various 
angles, we have introduced the normalizing factor in 
the denominator so tha t  the amplitude is uni ty at zero 
angle (/c = 0). The integration is to be performed over 
the entire plane, the limits being ~ from 0 to 2u and 
r from 0 to ~ .  Now, since 

f ~'~eik~ cos ~ d~ = 2~J0(kr ) , (2) 
0 

equation (1) becomes 

I ~ 2rlrG( r )Jo( kr )dr 
. F =  o . (3)  

fo2~rG(r )  dr 

Wrinch (1946) has also derived this relation in a s tudy 
of rotational symmetry  of Fourier transforms. 

For  an isolated solid rod of radius R, G(r) is uni ty  
for R > r > 0 and is zero for r > R. Substitution into 
equation (3), making use of the identi ty 

gives 
f 
R R 

r J  o(kr) dr - -  J l ( k R )  (4) 
o -k ' 

~, _ 2 J~ (kR) 
k R  " (5) 

This result is identical with the expression, first 
derived by Airy (1835), for Fraunhofer diffraction by 
a circular aperture. I t  has been applied by Guinier 
(1939) to the case of low-angle X-ray  scattering by 
oriented ramie fibres. The more detailed t rea tment  
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Fig. 1. Normalized intensity of scattering for independent: 

solid cylinders (curve A), cylindrical shells of finite thickness 
(c = 0"8) (curve B), and thin cylindrical shells (curve C). 

given below, however, takes into account the relative 
positions of the fibres. 

The normalized intensity ~ as a function of bR 
for solid cylinders is illustrated in Fig. 1 (curve A).  
This function is a rapidly damped oscillating curve 
which, for large values of kR,  approaches 

8 
r~(icR)a cos 9" (]cR-- ~r~) . (6) 

Maxima in the intensity appear at  bR=O,  5.14, 8.42, 
etc. For a solid cylinder the normalized intensity is 
reduced to one-half at  k R - -  1.61 as compared with 
kR = 1.76 in the case of a solid sphere of the same 
radius. 

For a cylindrical shell of thickness (1--c)R where 
1 > c > 0 ,  G(r) is zero for c R > r > O ,  uni ty  for 
R > r > c R ,  and zero for r > R .  Insertion into 
equation (3) gives 

I kRJ1 ( k R  ) - -  cbRJ~ ( c kR) 1 
F = 2 L ~ j .  (7) 

In  Fig. 1 (curve B)  is shown the intensity F ~ for 
c -- 0.8, tha t  is, for a shell of thickness one-fifth of 
the outer radius of the cylinder. This function has 
maxima at kR = 0, 4.25, 8.05, etc. and is reduced to 
one-half its zero-angle value at  kR = 1.25. 

If the equation (7) we let c tend to unity,  we obtain 
2' for an infinitesimally thin cylindrical shell of 
radius R:  

F = J o ( k R ) .  (8) 

This is equivalent to the result obtained by Rayleigh 
(1888) for Fraunhofer diffraction by a circular line 
aperture. The intensity F ~ for this case (Fig. 1, curve C) 
is a more slowly damped oscillating function than 
tha t  for the solid cylinder, and for large values of 
kR approaches 

(2/rckR) cos 2 (bR--~r~) . (9) 

The very pronounced maxima appear at  kR = 0, 
3'83, 7.02, 10"17, etc. The intensity is reduced to 
one-half its zero-angle value at  kR = 1.12. 

As will be seen by comparing the three curves 
drawn in Fig. 1, at  small values of kR the F 2 curves 
fall off more rapidly the more the scattering mat ter  
is removed from the center of the particle. For  small 
values of kR, the expression for F given in equation 
(7) may  be expanded in a power series. The first two 
terms of the square of this series, corresponding to 
the intensity F 2, are given by 

F 2 = 1--~(kR)~(1 + c  2) , ( lO)  

where (1--c)R is the thickness of the shell. For solid 
cylinders, this simplifies to 1--¼(kR) 2. l~ore generally, 
the square of equation (3) may, for small values of k, 
be approximated by 
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i 
O O  

r3G(r)dr 
k9 o 

F 2 -- 1 . (II) 

2 I:rG(r)dr 

For a cylinder of radially periodic structure with 
G(r) ----- cos 9 (~mr/R) for r < R and zero for r > R, 
where m is the number of concentric shells, (11) 
becomes 

F'. --  1- l (ke/~-  1 + ~ - ~  . 

Hence, for small angles the :scattering is practically 
independent of the internal radial structure of the 
cylinders. The complete expression for the periodic 
shell case can be obtained by using equation (3) and 
integrating by parts, making use of well-known 
relations between J0(x)and Jl(x). The solution is a 
complicated algebraic expression involving k, 2~m/R, 
Jo(kR) and Jl(kR), the most important term of which 
becomes greater the less the difference between k and 
2r~m/R. In  other words, the intensity F ~' becomes large 
as kR tends to 2gin, a condition which may be written 
as t ~ 2(R/m)sin 0, analogous to Bragg's law for a 
set of diffracting planes .of spacing R/m. 

The above treatments for the scattering by isolated 
circular cylinders may be generalized to deal with the 
case of cylinders of elliptical cross section. The remflts 
are expressible in terms of Mathieu functions of 
analogous type to the Bessel functions given above, 
with k and the length of the long axis of the ellipse 
and its ellipticity as parameters. 

Isolated a~,gre~,ates of cylinders 
Let us consider an isolated assembly of identical long 
cylindrical particles in perfect parallel orientation with 
their long axes normal to the incident beam and 
located in fixed positions relative to one another. By 
analogy with the scattering from polyatomic gases 
(Debye, 1915), we have for the normalized intensity 
of scattering by n cylinders, each with scattering 
factor F(kR), where the centres of the pth and qth 
cylinders are at a distance spq apart:  

9?,2  " 
P q 

If all rotational orientations about an axis parallel to 
the lengths of the cylinders are equally probable, each 
term is integrated between the limits 0 and 2g for a. 
Using equation (2), we obtain for the normalized 
intensity of scattering: 

2" 1 F'(kR) _~ Jo(kS,q) (14) 
9?,2 

P q 

:For two parallel cylinders (14) becomes 

¼F~(kR) [2 -t- 2J0( 27kR)], (15) 

where we have introduced the 'swelling' parameter 7 
defined by s/2R, 8 being the interparticle distance 
separating the centres of nearest neighbours. This 
parameter takes into account that  the particles may 
not be in contact owing to interparticle repulsion or 
'hydration'. In Fig. 2 we have plotted intensity curves 
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Fig. 2. Normalized in tens i ty  of scat ter ing per cyl inder  for 
independent  aggregates of two solid cylinders:  (A) ? =  1-00, 
(B) 7 = 1.25, (O) 7 = 2.00. 

for the aggregate of two solid cylinders with 7----1.00, 
1.25, and 2.00. In the first (contact) case (curve A) 
no interference maximum is observed. In the third 
case (curve C), where the two cylinders are separated 
by a gap equal to their diameters, there is a distinct 
maximum at kR ---- 1.53. In other words, 2=2-05ssin0, 
which means that Bragg's law is very nearly obeyed. 

For seven cylinders in a central hexagonal arrange- 
ment, the expression for the scattered intensity be- 
comes 

~F217+24J0(x)+6J0(2x)+12J0((I /3)x)] ,  (16) 

where x = 2~kR---ks. In Fig. 3 the intensity of 
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Fig. 3. Normal ized in tens i ty  of scat ter ing per cyl inder  for 
independent  aggregates  of seven solid cylinders in hexagonal  
a r ray  (s = 27R):  (A) ? ---- 1.00, (B) F ---- 1.25, (C) ~, ---- 2.00. 
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scattering is given as a function of ks for such an 
arrangement of solid cylinders with 7 = 1.00, 1.25, 
and 2.00. I t  is evident that  the diffraction bands are 
more pronounced the larger the gap between the 
particles; at the same time, the maximum of the main 
band moves toward a spacing corresponding to that  
of the 10 planes in a 2-dimensional hexagonal lattice 
of infinite extent. The subsidiary maximum, which has 
no equivalent in the case of the infinite lattice, is a 
result of the small number of particles in the system. 

:For small values of kR, the intensity for two solid 
cylinders is given, on approximating (15), by 

1-- k(kR)9(1 +279).  (17) 

Similarly, (16) is given approximately by 

1 _  ¼(kR)2(1 + ~s_y,). (18) 

The evaluation of g(r) from the observed values of I 
as a function of k is carried out by standard numerical 
methods, e.g. by planimetry. The factor F 9 discussed 
earlier is determined from the form of the scattering 
of the oriented individual particles or of a sufficiently 
loose packing of such oriented particles so that  
interference of the particles is not important. 

As seen in (21), the greater the correlation in position 
of the particles, the more the intensity is reduced from 
that  for the isolated particles, F ~'. To illustrate the 
interference effect, we may consider the idealized case 
in which g(r) is zero for s > r > 0, where s is the closest 
distance of approach of the centres, which may be 
greater than 2R. Substitution into (21) and making 
use of equation (4) gives for the normalized intensity: 

Fg(kR ) [ l _ v g s  ~ [2J~(k~)~] (23) \ k 

Non-independent particles with arbitrary 
location 

We shall now consider a system of parallel identical 
cylindrical particles of infinite length in which the 
particles are free to occupy any position. Once again, 
the problem reduces to a consideration of circular 
diffracting regions lying in a plane normal to the long 
axes of the cylinders. The probability that  the centre 
of the pth particle lies in the element of area dav 
while that  of another lies in the element daq, both 
elements of area being in the same plane, is 
g(rpq)d%daq/A 2, where rpq is the distance between 
the two elements and A is the total area. The 
normalized intensity of scattering by such a two- 
dimensional system (cf. Zernike & Prins (1927) for 
the equivalent three-dimensional case) is 

Eg"(kR)[1--NIl(1--g(r'q))eikrPqc°s~'dapdaq]A A J" (19) 

:For a radially symmetric distribution, r is referred to 
any element of area as centre, and (19) becomes 

F2(kR) [1--v I'0"fo r(1-g(r))e'krc°s~'d~dr]' (20) 

or, by use of equation (2), 

F2(kR) [1--V So2Xer(1--g(r))Jo(kr)dr ] , (21) 

where g(r) is the radial distribution function in the 
plane normal to the long axis of the cylinders, v=N/A 
is the density of particle centres in this plane, and the 
scattering sample is assumed to be of infinite extent. 

:From a given observed normalized intensity I,  we 
can determine g(r) by inverting the integral of (21) 
by means of the :Fourier-Bessel theorem (Watson 
(1948, p. 453). Writing I/F2--1 -~ i(k), we have 

f = ki(k/Jo(k /dk. (221 
0 

Two-d imens iona l  crysta ls  

We shall next consider the case where the centres of 
the cylindrical particles occupy the lattice points of 
a two-dimensional hexagonal crystal of infinite extent. 
Owing to ~he oscillatory nature of the F 2 factors, 
peculiar intensity relationships for the crystal re- 
flexions can occur, which are markedly dependent on 
the degree of lateral swelling. The effect is most 
marked in the case of cylindrical shells, where 
F ~ = [Jo(kR)]% The following spacing equation applies 
to such assemblies: 

o r  

t/( 3 ) 
dhk----- h'-t-hk-l-k" $R, (24) 

kR 2~ l/(h~+hk+k~) 
Va r 

where h and k are the Miller indices. The volume 
concentration for a hexagonal array of solid cylinders 
is g/2(V3)y~ which, at contact (closest packing), be- 
comes 0.905. 

Fig. 4 shows the relative intensities, for hollow 
cylinders arranged in a hexagonal lattice, of reflexions 
from the first eight sets of hk planes. The effect of 
multiplicity of reflecting planes is not included. The 
calculations refer to five different values of y=s/2R, 
where s is the unit-cell dimension. The abscissae 
represent the reciprocal of the interplanar spacing dhk, 
scaled down to the same value for easy comparison. 
In other words, instead of expanding the lattice we 
have contracted the radius of the cylinders, keeping 
s constant. I t  is clear that  the relative intensities do 
not fall off smoothly toward higher orders as they 
would with spherical particles. Indeed, for y = 1.5, 
the 10 spacing is absent, and is only barely perceptible 
for 7 = 1.75. These effects might well be important 
in the case of macromolecular particles and colloidal 
micelles containing heavy atoms at the periphery or 
for tightly coiled helical particles, and some caution 
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Fig. 4. Relative intensities for thin cylindrical shells arranged 
in a two-dimensional hexagonal lattice as a function of 
reciprocal interplanar spacing for various value~ of 7. 
Bottom line gives values for point scatterers. 

would be advisable in interpreting diffraction results 
from such systems. 

Orientation of independent regions 

In  the previous sections it has been assumed tha t  the 
incident and scattered beams lie in the plane 
perpendicular to the long axis of the cylinders and 
tha t  the only freedom of movement allowed to the 
systems is tha t  of rotation about a normal to this 
plane. We shall now deal with the more general case. 

For the reasons given earlier, the intensity function 
for a given independent scattering region is localized 
in a plane, and the direction and intensity of scattering 
are defined by the intersection of this plane with the 
sphere of  reflexion in reciprocal space. As any one 
unit or domain, considered in isolation, is anisotropic, 
its orientation needs to be known in order to derive 
the spatial distribution of intensity. 

Let us first consider systems consisting of inde- 

L ,.// ./ 

> Q 

Fig. 5. Ewald scattering sphere (see text for explanation). 

pendent scattering regions, all parallel as regards their 
particle axes but  with random rotational orientation 
about a line parallel to each of these axes. The averaged 
intensity function will then have radial symmetry  
about its origin. Fig. 5 shows how this planar averaged 
intensity function of kR intersects the sphere of 
diameter 4~R/2. I t  is clear tha t  diffraction can occur 
up to the maximum angle defined by k R = 4 ~ R / 2 ,  
when the plane of the intensity function contains 
the diameter OQ and the scattering point P is at  
Q(20 = g), i.e. when the cylindrical axes are per- 
pendicular to the incident beam. The diffracted rays  
then lie in a plane containing the incident beam. In  
the general case, the function-plane cuts the sphere 
in a circle of smaller diameter than 4z~R/~ and this 
restricts the angular range of diffraction. The diffracted 
rays describe a cone MOPL of axis M T  which would 
intersect a flat film, placed in the usual way at right- 
angles to the incident beam QMO, in an ellipse passing 
through the centre. The intensity is symmetrical about 
the plane OML, and M T  is the direction of the particle 
axes. If, now, we let the independent scattering regions, 
assumed to be large in number, have completely 
random orientation, the circular line of constant 
scattering power P R S  becomes the surface of a 
sphere of centre 0 and intersects the sphere of reflexion 
in a circle, the plane of which is at right angles to QMO. 
Rays of equal intensity therefore describe a cone 
whose axis is the direction of the incident beam, and 
the angular distribution of intensity in any plane 
containing the incident beam is, as regards relative 
intensity, the same as in the special case when the 
particle axes are perpendicular to the main beam, 
although in tha t  case the diffraction is limited to one 
plane only. In  other words, the expressions derived 
in the previous sections apply also to an assembly of 
a large number of randomly oriented independent 
scattering domains. They would not, however, apply 
to the general case of arbi t rary specific orientation 
just discussed and illustrated in Fig. 5. 
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